
J .  Fluid Mech. (1978), vol. 87, part 4, p p .  773-783 
Printed in Great Britain 

773 
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The initial-value problem for a one-dimensional gravity wave of amplitude a and 
characteristic length 1 in water of depth d is examined for 0 < a/d < d2/12 < 1. A 
preliminary reduction leads to a Korteweg-de Vries (KdV) equation in which the 
nonlinear term is O(E) relative to the linear terms, where E = 3a12/4d3 < 1 is a measure 
of nonlinearity/dispersion. The linear approximation ( E  4 0) is found to be valid if 
and only if ~ 7 *  < 1, where 7 = * ( ~ ! / 1 ) ~  (gd ) i  (time)/Z is the slow time in the KdV equa- 
tion. The asymptotic solution of the KdV equation is obtained with the aid of inverse- 
scattering theory and is found to comprise not only a decaying wave train that is 
qualitatively similar to that predicted by the linear approximation, but also a soliton 
of amplitude 3V2/4d3 = O(Ea) if V > 0, where V is the cross-sectional area of the 
initial displacement, or of amplitude = O(s3a) if V = 0 (there is no soliton if V < 0). 
This soliton is fully evolved, and dominates the solution, only for e d  B 1 if V > 0 or 
E%* > 1 if T' = 0, but nonlinearity already has significant effects for e7* = O(1). 

1. Introduction 
Ursell(l953), in his seminal paper on the scaling of nonlinear waves, remarks that an 

initially localized,positiwe displacement (a mound of water) in a wave tank, no matter 
how small, ultimately produces a solitary wave (Scott Russell 1844), whereas linear 
theory, presumably valid in the limit of small amplitudes, yields no such wave. The 
seeming contradiction, which may appropriately be designated as the Ursell paradox, 
is a consequence of the non-uniform validity of linear theory for sufficiently large 
times, i.e. of the non-commutativity of the limits ampZitude-+O and time-tco. I 
consider here the analytical resolution o€ that paradox and the description of the 
soliton for initial displacements of either positive or zero volume. 

Consider a homogeneous inviscid liquid of uniform depth d and let a be a character- 
istic amplitude and 1 a characteristic wavelength; then nonlinearity and dispersion 
are measured by 

a = a/d, /3 = (d/1)2, ( l . la ,  b )  

respectively, and their relative importance is measured by the parameter (Urselll953) 

s = 3a/4/3 = 3a12/4d3. (1.2) 

Linear theory describes the limit a + 0 with /3 fixed (and hence E -+ 0) on the hypothesis 
that I and l(gd)-i  are representative scales of horizontal distance and time. Boussinesq 
or, in the present context, Korteweg-de Vries (KdV) theory describes the joint limit 
a 3 0, /3+ 0 with E fixed and comprises linear long-wave theory through the subsequent 
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limit E --f 0. The Ursell paradox therefore may be investigated by invoking KdV theory 
and then letting 6 -+ 0. 

The solution of the Boussinesq equations (cf. Whitham 1974 , s  13.11), whichgovern 
the free-surface displacement ay and the depth-averaged horizontal velocity a(g/d) i  u 
on the basis of the preceding assumptions, may be posited in the formt 

( 1 . 3 ~ )  

(1.3b) 

y(x, t )  = y+(x - t ,  7 )  + q-( - 2 - t ,  7) + O(a) 

u(x,  t )  = y+(2 - t ,  7 )  - r-( - x- t ,  7 )  + O(a), nd 

where Zx is the horizontal co-ordinate, Z(gd)-i t is the time, 

7 = 4pt (1.4) 
is a slow time, and y*(E, 7 )  is slowly varying in a reference frame moving to the right/ 
left with the basic speed (gd)3 and satisfies the Korteweg-de Vries (KdV) equation 

r r  + 9rlgc + 4ETrlS = 0 
and the initial condition 

wherein alternative signs and subscripts are vertically ordered. Mass (or volume), 
momentum and energy, each of which is conserved, are measured by (y+ + 7-), 
(y+ - y-) and (y2+ + y:), respectively, where 

J - . o  

I henceforth omit the subscripts and consider the solution of (1.5) subject to the re- 
duced boundary condition 

y(6-9 0) = ro(6). (1.8) 

r r  + 47, = 0 (1.9) 

y(E, 7 )  (70) 7-*Ai (7-*6) (7 t a) (1.10) 

The solution of the linearized KdV equation 

and the initial condition (1.8) has the asymptotic form (see Q 2) 

and is characterized by a steeply rising wave front in 2 7% and by a slowly decaying, 
dispersive wave train in 5 -74. It might appear that the asymptotic solution of 
(1.5) and (1.8) for 0 < E << 1 could be similarly characterized; however, it is known 
(Ursell 1953; Segur 1973) that if (yo) > 0 this solution comprises both a decaying 
(as 7tm) component, which bears at least some qualitative similarity to that 
predicted by linear theory, and a soliton of the form 

y1(E,7) = ( ~ ~ / ~ ) s e c h ~ ( ~ E - ~ ~ 7 + g ) ,  (1.11) 

which is fully evolved only for / c d  9 1. That there is only one soliton is evident a 
priori from Segur's (1973) extension of Bargmann's inequality, which gives the upper 
bound 

t The basic argument on which this superposition rests, that the interaction between the 
oppositely moving waves is weak by virtue of the relatively brief interaction time, goes back to 
Gwyther (1900) and has since been re-advanced by others; see Miles (1977) for references and 
a more detailed derivation. 
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on the number of solitons that evolve from T~ (the integral is uniformly bounded as 
E J. 0 by virtue of the assumption of compact support and the definition of 1) .  I obtain 
(in Q 5 )  the explicit result 

(1.13a, b )  

where, here and subsequently, (yo) = O(1) except as noted. [The true amplitude of 
the soliton described by (1.1 1 ) and (1.13) is 3 V2/4d3, where ?‘ is the cross-sectional 
area of the initial displacement.] It follows from (1.1 1 ) and (1.13) that 

K = ~ ( 7 ~ )  + O(e2), 6 = i l n  2 + O(e), 

( T I )  = %To> + O ( 4  (1.14) 

and hence that the dispersive component of the solution must have a relative mass 
- (qo), rather than the value ( T ~ )  predicted by linear theory, in order to conserve the 
initial value (q0). 

There is no soliton if (yo) < 0 in the limit E J. 0, but even then scaling considerations 
(see Q 2), which also hold for (yo) > 0, imply that nonlinearity is significant for 
€73 = O(1) and hence that the linear approximation is valid only for ET* < 1 (Ursell 
1953). These same considerations also suggest that a direct perturbation expansion 
starting from the linear approximation is not uniformly convergent as 7 f 00. 

The reckoning is more delicate if (r0) = 0, which is a necessary condition if the wave 
motion is initiated from rest by deforming the free surface from its quiescent level 
(the state of static equilibrium).? A direct perturbation analysis (see Q 2) then appears 
to succeed and to provide an asymptotic description in the form of a similarity solution 
(Berezin & Karpman 1964, 1967); in fact, I find that (see Q 5 )  0 < E < 1 and (vo)  = 0 
imply the existence of a single soliton of the form (1 .11  ) with 

K = 2e2(+3+0(e3), +o(x) = s” To(C)& ( (To) = 0). (1.15a, b )  
m s g n z  

It is true that the amplitude andrelative mass ofqlnowareK2/c = O(s3)and2~/e = O(E) ,  
respectively, and therefore negligible in the limit E 4 0 with 7 fixed; nevertheless, rl 
dominates the solution in 7 % 1 / K ~ .  

I proceed as follows. The linearized solution, including (1.10) and its generalization, 
and the aforementioned similarity solution are considered in Q 2. The inverse-scattering 
algorithm, which reduces the solution of the KdV equation to the solution of a scatter- 
ing problem and of a linear (Marchenko) integral equation, is recapitulated in Q 3. 
An integral-equation formulation of the scattering problem is briefly developed in 
Q 4, following established procedures in quantum mechanics. The explicit solution of 
the scattering problem for E < 1, including the derivation of (1.13) and (1.15), is 
developed in Q 5 .  The resulting approximations are used in Q 6 to describe the evolution 
of the KdV solution from the linear approximation in €79 = O(1). 

The soliton is distinct from, and dominates, the dispersive component of the solu- 
tion in KT* % 1. A description of the latter component may be obtained, at  least in 
principle, by separating out the soliton to obtain a modified Marchenko integral 
equation, which admits a convergent Neumann-series solution; however, explicit 
results appear to be difficult to obtain through this procedure, and I therefore have 

t The free-surface displacement in a laboratory wave tank, in which the motion is initiated 
from a localized mound of water, is typically measured from a depressed level surface that is 
not one of static equilibrium. 
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relegated it to an appendix. F'inally, it  should be observed that viscous dissipation 
could prove more significant than nonlinearity for the fine structure of the dispersive 
component over the very long time intervals implied by KT* 9 1. 

2. Linear and similarity approximations 

by (Berezin & Karpman 1964) 
The solution of the linear KdV equation (1,9) and the initial condition (1.8) is given 

where G(( ,  7 )  = 7 3  Ai (746) (2.2) 

is the Green's function for (1.9). Letting 7 t co with 5 = O ( d )  and invoking the restric- 
tion that vo be of compact support, we obtain the asymptotic expansion 

v'"(5,7) - 5 ((zn:nro)/n ( - 7 )  ( 2 . 3 ~ )  

(2.3b) 
n=O 

N (qo)  7 4  Ai (7-*c) - (xy,) 7-3 Ai' (746)  + . . . , 
in which (qo) ,  (zyo), . . . are the source, dipole, . . . moments of the initial distribution. 

The linear approximation (2.1) could be extended by regarding the nonlinear term 
in (1.5) as a perturbation forcing function, constructing the implicit solution of (1.5) 
and (1.8) in the form 

and solving either by iteration or by expanding q in integral powers of B .  It is already 
evident from (2.3b), however, that the resulting expansion cannot be uniformly valid 
if (qo) 4 0, for then the substitution of the dominant term in the asymptotic expansion 
into the KdV equation (1.5) with 5 = o(d) reveals that the linear and nonlinear terms 
are O(7-+) and O(m-l), respectively, in consequence of which the linear approximation 
fails for 79 = O(E-1). 

The perturbation solution appears more promising if (yo) = 0, for then the corres- 
ponding substitution implies that the linear and nonlinear terms in ( I  . 5 )  are O(7-f) 
and O ( E ~ - + ) ,  respectively, and hence that the nonlinear term remains uniformly O(B) 
relative to  the linear terms. This suggests that the asymptotic solution of (1.5) and 
(1.8) for (qo)  = 0 should be of the form (Berezin & Karpman 1964)t 

q ( g ,  7 )  - gr-W-(x),  x = 7-46 (7 fa), (2.6a, b) 

where N(z)  satisfies [substitute (2.5) into (1.5)] 

N"-zJ l r ' - 2N+6Nf l=  0. (2.6) 

t Karpman (1967) claims that no soliton exists if B < 1 and ( T ~ )  = 0, whilst Berezin & 
Karpman (1967) claim that the exact solution of (1.5) and (1.8) for ~, (z )  = P ( z )  is of the form 
(2.5). The former claim is negated by the present results; see (1.15) and 55. The latter claim 
also is negated for any finite approximation t o  S'(z), but the significance of the limit v0 + s'(z) 
is obscured by the prior restriction 1 d. 
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In  fact (see $ 6 ) ,  the asymptotic solution of (1.5) and (1.8) contains a term proportional 
to m-)Ai (m) for m4 = O(l ) ,  in consequence of which the similarity solution (2.5) 
offers no real improvement over the linear approximation. 

3. The inverse-scattering algorithm 
The solution of (1.5) and (1.8) may be carried out according to the following algo- 

rithm of Gardner, Greene, Kruskal & Miura [see Whitham 1974, $ 17.3, after letting 
u = - 2 ~ 7 ,  x = 6 and t = +7 therein so that x in this section differs from x in 0 1, 
and B(x, 7) replaces Whitham’s B(x, t ) ] .  

(i) Solve the scattering problem posed by the one-dimensional Schrodinger equation 

(3.1) {(d/d2)2+k2+ 2E70(2))y9(2, k )  = 0 (-a < 2 < 00) 

and the radiation condition 

$ e-ikx + b(k )  eikx (z f co) 

to obtain the reflexion coefficient b(k)  over the continuous spectrum - 00 < k < 00. 

(ii) Solve the eigenvalue problem posed by (3.1) and 

$ - e-Kz (xfco), y E (y9”>-’ > 0 ( k  = i ~ )  (3.3a, b )  

to obtain the discrete eigenvalues K~ > K~ > ... > K N  > 0 ( N  = 0 if the discrete spec- 
trum is empty) and the normalizing parameters yn. We exclude pure-soliton problems, 
for which b ( k )  = 0 (see Whitham 1974, 0 17.4). The discrete eigenvalues then are given 
by the poles of b(k )  on the positive imaginary axis of the complex k plane [‘false poles’ 
are ruled out by the restriction that ~,,(x) be of compact support; see DeAlfaro & 
Regge 1965, 0 7.31. The corresponding normalizing parameters are given by 

(3.4) yn = - i Res {b (k ) ,  k = i~,}. 

(iii) Determine the auxiliary function 

m N 

-m n = l  
B ( Z , 7 )  = (27’r)-lS b(k)eXp(ikx+$ik3T)dk+ yneXp(-KnX+$Ki7). (3.5) 

(iv) Solve the Marchenko equation 

J x  

(v) The required solution of (1.5) and (1.8) then is given by 

(3.7) 

The argument 7 evidently enters the inverse-scattering algorithm only as a para- 
meter and is henceforth implicit in both B and K if not explicitly displayed. 
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4. Integral-equation formulation of the scattering problem? 
The solution of (3.1) may be posed in the implicit form 

+(x, k) = e--ikz - e(ik)-1] e-iklx-ul$(y, k) v0(y) dy, (4.1) 

in which the first and second terms represent the incident and scattered waves. Letting 
z t  00 in (4.1) and comparing the result to  (3.2), we obtain 

-m 

J -m 

Combining (4.1) and (4.2) or, alternatively, solving (3.1) and (3.2) by variation of 
parameters, we obtain the equivalent integral equation 

J x  

The integral equation (4.3) admits a solution of the form 

wheref(x, k) is determined by the reduced integral equation 

f(x, k) = e--ikx + 2ek-1 sin (k(x - y)}f(y, k) vo(y) dy 

or, equivalently, by 
((d/dz)2 + k2 + 2€7*(X)}f(Z, k) = 0 

(4.5) 

Substituting (4.4) into (4.2), we obtain 

-1 m 

e-ik2f(x, - k) go(2)dz.j 1 e-ikxf(x, k) vo(x )  dx. (4.8) 
-m 

The one-dimensional scattering problem differs from its spherically symmetric 
counterpart both in the range of x (or r ) ,  ( - co, co) V.S. (0 ,  a), and in the fact that 
regularity at  the origin requires + ( O ,  k) = 0 (if r$ is the wave function) for the latter 
problem. The analogy between the two problems is much closer if qo(x) is even: then 
only (0, co) need be considered, and the extension of Jost’s formulation (Goldberger & 
Watson 1964) yields 

b(k )  = - - 

wheref’(0, k) = df(x, k ) / d x  at x = 0. 

(4.9) 

The development in this section is analogous to that given in quantum-mechanics textbooks, 
0.g. Goldberger & Watson (1964), for spherically symmetric scattering under the rubric of the 
Jost function; see also DeAJfaro & Regge (1965). 
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5. Solution of the scattering problem for e << 1 

Theintegral equation (4.5) may be solved by iteration or, equivalently, by expanding 
f i n  powers of B ;  convergence can be proved (cf. Goldberger & Watson 1964, p. 272) 
andis uniform by virtue ofthe restriction that qo(x) be of compact support. Substituting 

(5.1) 
the first approximation f(x, k) = e--ikz(l + O(B)}  
into (4.8), we obtain 

b(k )  = -€ { ik+€N(O)} - lN(2k) ,  

J --m 

is the Fourier transform of qo(x), and O ( 8 )  errors are implicit in both the numerator 
and the denominator of (5 .2) .  There is a single &screte eigenvalue, 

K = €N(O) = €(To), (5.4) 

if ( T ~ )  > 0. The corresponding approximation to  the residue of - ib a t  k = i~ is y = K. 

The approximation (5 .2 ) ,  which implies the existence of a single soliton if (v0) > 0, 
is uniformly valid for all k as 6 4 0 if (?lo) = O(i) .  It is exact for r ] ,  = 6(x), but this 
example is of rather dubious significance in the present context, in which (from the 
definitions of the length scales a and I )  rl0 is assumed to be of order unity over an x 
interval of order unity. A more significant example is r0 = sech2 x, for which the exact 
solution of the scattering problem yields K~ = *{( 1 + S B ) ~  - 1) and N = 1 for 0 < B < 1 ; 
the limiting approximation K~ = 2 ( B  4 0) agrees with (5.4) ( T ~  = sech2x is not of 
compact support, but its exponential decay as 1x1 +co is a sufficient alternative in the 
present context). 

The second approximation to the solution of (4.5) is given by 

(5 .5)  

Substituting (5.5) into (4.8) and transforming the resulting double integrals to sym- 
metric forms, we obtain 

7 (5.6) 
J --m J --m - b ( k )  = 

ik + €N(O) - €2(2ik)4 lm (e2iklx-yi - 1 ) T 0 (2) 7 0 ( Y ) d Y d X  
-m 

in which N ( k )  is given by (5.3) and 0(e3) errors are implicit in both numerator and 
denominator. Expanding the numerator and denominator about k = 0, simplifying 
the remaining integrals through integration by parts, and introducing 

we obtain 

where 

and 
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The corresponding approximation to the residue of - ib a t  k = i~ is 

y = K(1- 2 ~ )  +0(€3). (5.11) 

It follows from (5.8) that b(0 )  = - 1 unless K = 0, i.e. unless (qo) = - 24&) + O ( E ~ ) .  
It follows from (5.9) that there is one and only one soliton for an initial displacement 
of zero volume ((qo) = 0) in t,he limit s 3. 0. 

The second approximation (5.6) differs only quantitatively from the first approxi- 
mation (5.2) if (qo) = O(1) as E 3. 0; but it differs qualitatively, and is uniformly valid, 
near k = 0 if ( T ~ )  = 0 [or, more generally, (q0)  = O(s)]. A simpler approximation, 
which retains this uniform validity and reduces to (5.8) for k J. 0, is [cf. (5.2)] 

b(k)  = - ( i k + K ) - ~ { E N ( 2 J C ) + K - f z ( ~ 0 ) } + O ( E 2 ) ,  (5.12) 

where K is given by (5.9). 

6. Evolution of q in €74 = (0)i 

The evolution of q from [ , 7  = O(l) ,  where the linear approximation (2.1) is valid 
for E < 1 ,  into €74 = O( 1 ), where nonlinear terms in the solution of the KdV equation 
are comparable with the linear term, may be inferred from the Neumann-series 
solution (Segur 1973) 

of (3.6) and (3.7). The series is convergent for all 5 and 7 if N = 0; the proof is given by 
Miura (1 976) under restrictions that are satisfied here through the restriction that 
r 0 ( x )  must be of compact support. The series is not convergent for all 5 and 7 if N > 0; 
however, guided by the form of the contributions from the soliton component of 
B([ ,7) ,  v.i., I conjecture that (6.1) is convergent in 5 > $K% if N = 1. 

Substituting (5.12), y1 = y and K~ = K (if K > 0) into (3.5) and evaluating the Fourier 
integral with the aid of the convolution theorem, we obtain 

where K ,  y ,  7Co) and CT are given by (5.9), (5.11), (2.1) and (2.2), and H ( K )  is Heaviside’s 
step function. It can be shown that the implicit remainder is 0 ( e 2 )  if 5,7 = O(1) or 

Substituting (6.2) into (6.1) and letting s 3. 0 with 5, 7 = 0(1 ) ,  we recover (2.1). The 
higher-order terms make contributions that are O(q(O)) for 74 = O(l/s), in consequence 
of which (2.1) is valid if and only if ~ 7 6 .  <i 1, as anticipated in 9 2. 

Substituting (2.3) into (6.2) and letting E 3.0 with 7-4 = O(E),  or, alternatively, 
substituting (5.8) into ( 3 4 ,  we obtain (after some reduction) 

(6.3) 

0 ( € 3 )  = o(i/€). 

B(25) = ~ ( 1 -  2h) .Zi’(5,7) - hG(& 7 )  + O ( 3 )  [7-4 = O(S) ] ,  
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where 
5 

P ( ~ , T )  = H(K) exp ( - 2 ~ 6  + 9 ~ ~ 7 )  - j exp [ - 2 4 6 -  511 G(5, 7 )  dc (6.4) 
-m sgn K 

and h is given by (5.10). We remark that h = 0 and B ( 2 6 )  = KP(& 7) is exact for 

The substitution of (6.3) into (6.1) provides a formal description of the evolution 
of 7 in 1 g 74 = O(s-l); however, each term in the Neumann series is O(e2) for 7-* = O(e) 
unless ( T ~ )  = 0. In  that important special case, B = O(e2),  the successive terms in 
(6.1) are O(s3, e4, 8, ...), and 

(6.5) 

The similarity solution ( 2 . 5 )  comprises the second but not the first term in (6.5) and 
therefore is valid only in s d  g 1,  the domain of the linear approximation. We note 
that (6.5) does not include the precursor of the soliton, which is O(e3) if ( T ~ )  = 0. 

B(25,7) is exponentially small, and (6.1) converges rapidly, if K ( - + K ~ ~  9 1 (or 
9 T* if K < 0). The path of integration for the Fourier integral in (3.5) then may be 

deformed into the path of steepest descent through the saddle point a t  k = 4i((/7)*, 
which lies below/above the pole at  k = i~ (for K > 0 )  if 5 5 4 ~ 2 7 .  Carrying out the 
saddle-point approximation and allowing for the contribution of the pole, which just 
cancels the contribution of the discrete spectrum if 6 > 4 ~ 2 7 ,  we obtain 

B ( 2 5 )  - ~ H ( K )  H ( ~ K %  - 6) exp ( - 2 ~ 5 +  9 ~ 3 7 )  + in-%{*i(LJ~)t} (&)-A exp ( - $7458). 

7o(x) = +6(x). 

7(5,7) = 2 4 9 3  7-)Ai ( ~ - * c )  + (q50) 7-f Ai’ ( d 6 )  + O(s3) ((qo) = 0) .  

(6.6) 

An extension of (6.6) that is uniformly valid in the neighbourhood of 6 = 4 ~ 2 7  may 
be obtained by separating out the singular part of b and transforming the saddle-point 
approximation to the singular integral to that error-function integral denoted as 
w(z) by Abramowitz & Stegun (1964, $ 7.1.3). 

q((, 7 )  - ~ Y K H ( K )  ~ ( 4 ~ 2 7  - () exp ( - 2 ~ 5  + 9.37) + &i--h{&i(t/~)h} T-+@ exp ( - #T-@), 

(6.7) 

Substituting (6.6) into (6,1),  we obtain 

which extends Ablowitz & Newell’s (1  973) result for iV = 0 to N = 1. Similar results 
may be obtained for N > 1 by allowing for the additional poles; in particular, €7 is 
asymptotic to the second term in (6.7) for 6 > 4 ~ 3 ,  where icl is the largest eigenvalue. 

This work was partially supported by the Physical Oceanography Division, National 
Science Foundation (NSF Grant OCE74-23791) and by the Office of Naval Research 
(Contract NOOO14-76-C-0025). I am indebted to Harvey Segur for helpful suggestions. 

Appendix. Reduction of Marchenko integral equation for N = I ,  KT) f co 

We consider here the asymptotic domain KT* 9 1, in which the soliton is fully 
developed, for N = 1 (for which e < 1 and ( v 0 )  > 0 are sufficient but not necessary 
conditions). The asymptotic solution for N = 0 (for which e < 1 and (v0 )  < 0 are 
sufficient) has been considered by Zakharov & Manakov (1 976) and Ablowitz & Segur 
(1 977). 
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Guided by the known solution of (3.6) for the pure-soliton problem and by the 

(A 1 d) 

asymptotic scaling implicit in the preceding development, we introduce 

8 = 2~74, X = KZ - 3 ~ ~ 7  + 6, 6 = 4 In ( ~ K / Y ) ,  z = +T-*x, 

recast (3.5) in the form 
B(z + y) = 2 ~ e - X - Y  + &%B(z +y), 

where g ( ~ )  = (2n)-1Sm b(Kk/O)exp[i(kZ+$P)]dk ( R =  2k7*), (A 2b)  
-m 

and posit the solution of (3.6) in the form 

K(x, y) = KK(X) ex-= + +r*X(z,  y) ,  (A 3) 

where Y andy are the counterparts of X and Z. We remark that 0 is the ratio of the 
length scales of z and X ( a X / a ~  = 8 )  and that (A 3) and the subsequent development 
up to (A 8) is valid for all 8 (in particular, it does not neglect the interaction between 
the soliton and the decaying wave train). 

Substituting (A l) ,  (A 2a) and (A 3) into (3.6), integrating the product of the ex- 
ponential terms and dividing the result by K, we obtain 

ex-={( 1 + e-2x) K(X)+ae-=}+O-l X ( z , y ) + g ( ~ + y ) +  a(y+z).X(z,z)d; t :  

Requiring the coefficient of exp ( - Y )  in (A 4) to vanish separately and invoking the 
operational iden ti ty 

we obtain K(X) = (1 + (8-tJy)-1X(~,y)}y=,(tanhX- 1)  (A 6a)  

and .X(~,y)+{l  +K(X)8(8-aZ)-l}99(a:+y)+ ~ ( , + ~ ) . X ( Z , X ) ~ X  = 0. 

(A 6b) 

Substituting (A 6a)  into (A 3), setting x = y = 6 and invoking (3.7), we obtain (after 
some reduction) 

(A 7) 

(A 9) 

szm 
ST,+$, 7 )  = K~ sech2 (KC- QKa, + 6) + $7-8 M(7-36) 

where JIZZ) = Ba,c.x*(s> Z), X * b , y )  = f ( X ,  ay, X(?y,f (A 8a, b) 

and 

Note that X enters (A 6 b )  only as a parameter but that aX/aa: = 8 in (A 8a). 

$ ( X ,  a,) = (0 tanhX - a,) (8 - 

Letting 0 f co in (A 6a)  with z = 0(8),  we obtain 

K(X) - (tanhX-i){l  +O(O-l)}. (A 10) 

Substituting (A 10) into (A 6b) and introducing 
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we obtain the modified Marchenko equatioh\ 

r m  

which determines X within 1 +O(O-l). The first and second terms in (A 7) now (for 
8 B 1 )  are distinct and describe the soliton and the decaying wave train. 

The integral equation (A 12) differs from its counterpart for N = 0 only in the 
inhomogeneous term (a* in place of B)  and is solvable in principle through a con- 
vergent Neumann expansion. 
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